
SETsafe | SET fuse

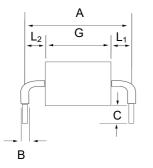
Description

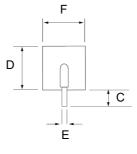
The SPCL10 series of high power TVS diode is specially designed for meeting severe surge test environment of both AC and DC line protection applications. It features a very fast response and ultra low clamping characteristics over traditional metal oxide varistor (MOV) solutions. They can be connected in series and / or parallel to create a very high surge current protection solution.

Applications

- Communication Equipment
- Security & Protection
- Industrial Control Equipment
- Power Supply
- Automotive Electronics
- New Energy
- Lightning Protection

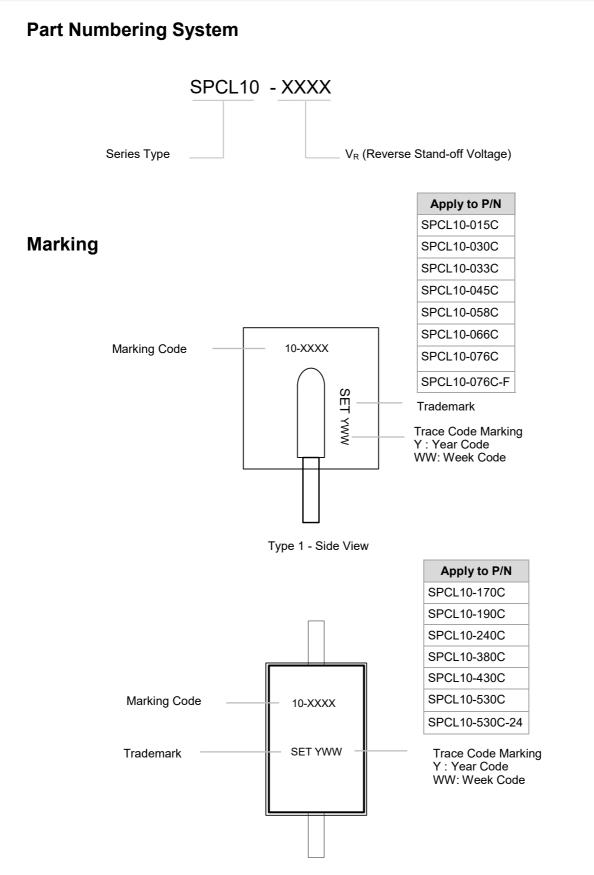
Functional Diagram


Bi-Directional


Features

- Very low clamping voltage
- Sharp breakdown voltage
- Low slope resistance
- Bi-directional
- Snapback technology for superior clamping factor
- Symmetric in leads width for easier soldering during assembly
- IEC-61000-4-2 ESD 30 kV (Air), 30 kV (Contact)
- ESD protection of data lines in accordance with IEC 61000-4-2
- EFT protection of data lines in accordance with IEC 61000-4-4
- Surge protection of lightning in accordance with IEC61000-4-5
- Halogen-free
- RoHS compliant
- Glass passivated junction
- Pb-free E4 means 2nd level interconnect is Pb-free and the terminal finish material is Silver

1


Package Outline Dimensions

Symbol	Millimeters	Inches
А	24.15 ± 1.00	0.950 ± 0.040
A - 530C	34.70 ± 2.00	1.370 ± 0.080
A - 530C-24	24.15 ± 1.00	0.950 ± 0.040
В	2.50 ± 0.70	0.100 ± 0.028
С	6.00 ± 1.00	0.236 ± 0.040
D	14.48 max.	0.570 max.
E	1.28 ± 0.05	0.051 ± 0.002
F	12.70 max.	0.500 max.
G - 015C	3.60 ± 1.00	0.142 ± 0.040
G - 030C / - 033C/ - 045C	4.23 ± 1.00	0.167 ± 0.040
G - 058C / -066C / - 076C	5.08 ± 1.00	0.200 ± 0.040
G - 076C - F	5.88 ± 1.00	0.232 ± 0.040
G - 170C / - 190C	9.20 ± 1.00	0.362 ± 0.040
G - 240C	10.67 ± 1.00	0.420 ± 0.040
G - 380C / - 430C	14.50 ± 1.20	0.571 ± 0.047
G - 530C	27.00 ± 1.50	1.060 ± 0.060
G - 530C-24	17.50 ± 1.50	0.689 ± 0.060
L ₁ / L ₂	$L_1 = L_2$ Tolerance ± 1	.0 mm(0 .04 inch)

SETsafe | SET fuse

Electrical Characteristics (T_A = 25 °C unless otherwise noted)

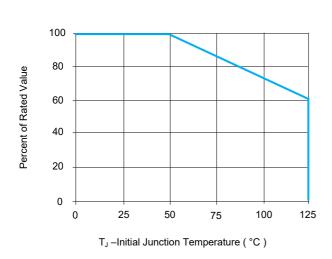
Part Number	Device Marking Code	Breakdown Voltage V _{BR} @I⊤		Test Current I _T	Stand-off Voltage V _R	Max Reverse Leakage I _R @V _R	Typical I _R @85°C	(IF	age op Peak Current	Max. Temp Coefficient OF V _{BR}	Typ. Capacitance 0 Bias 10kHz	
		Min	Min Max					(Note 1)				
		(V)	(mA)	(V)	(μΑ)	(µA)	I _{PP} (A)	V _{CL} (V)	(% / °C)	(nF)	
SPCL10-015C	10-015C	16.0	19.0	10	15	10	15	10000	28	0.1	40.0	
SPCL10-030C	10-030C	32.0	37.0	10	30	10	15	10000	58	0.1	20.0	
SPCL10-033C	10-033C	36.0	40.0	10	33	10	15	10000	53	0.1	20.0	
SPCL10-045C	10-045C	48.0	55.0	10	45	10	15	10000	80	0.1	20.0	
SPCL10-058C	10-058C	64.0	70.0	10	58	10	15	10000	110	0.1	10.0	
SPCL10-066C	10-066C	72.0	80.0	10	66	10	15	10000	120	0.1	10.0	
SPCL10-076C	10-076C	85.0	95.0	10	76	10	15	10000	140	0.1	6.5	
SPCL10-076C-F	10-076C-F	85.0	95.0	10	76	10	15	10000	140	0.1	6.5	
SPCL10-170C	10-170C	180.0	220.0	10	170	10	15	10000	260	0.1	4.0	
SPCL10-190C	10-190C	200.0	245.0	10	190	10	15	10000	290	0.1	3.0	
SPCL10-240C	10-240C	250.0	285.0	10	240	10	15	10000	340	0.1	2.2	
SPCL10-380C	10-380C	401.0	443.0	10	380	10	15	10000	520	0.1	2.0	
SPCL10-430C	10-430C	440.0	490.0	10	430	10	15	10000	625	0.1	1.4	
SPCL10-530C	10-530C	560.0	619.0	10	530	10	15	10000	750	0.1	1.0	
SPCL10-530C-24	10-530C-24	560.0	619.0	10	530	10	15	10000	750	0.1	1.0	

Note:

Using 8 / 20 μs wave shape as defined in IEC 61000-4-5.

Maximum Ratings and Characteristics

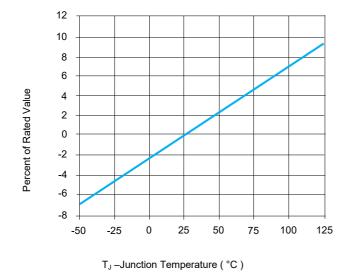
($T_A = 25$ °C unless otherwise specified.)

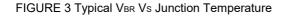

Parameter	Symbol	Value	Unit
Operating Storage Temperature Range	T _{STG}	-55 to 150	°C
Operating Junction Temperature Range	TJ	-55 to 125	°C
Current Rating (Note 1)	I _{pp}	10	kA

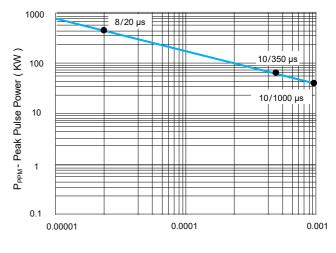
Note:

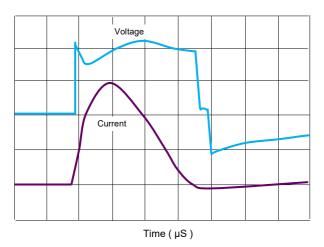

Rated I_{PP} measured with 8/20 µs pulse.

SETsafe SET fuse SPCL10 Series (10 kA)


Ratings and Characteristic Curves(T_A = 25 °C unless otherwise noted)







 t_d – Pulse Width (s)

FIGURE 4Peak Pulse Power Rating Curve

SETsafe SET fuse

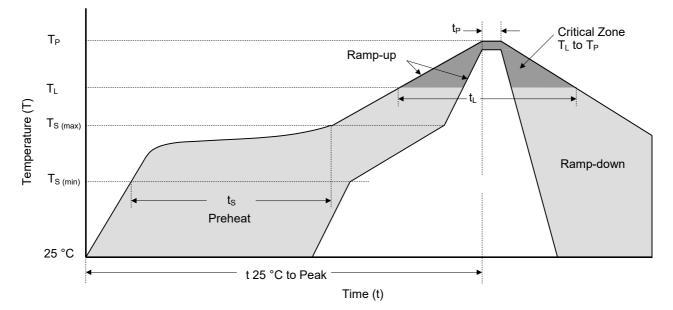
SPCL10 Series (10 kA)

Note: The power dissipation causes a change in avalanche voltage during the surge and the avalanche voltage eventually returns to the original value when the transient has passed.

FIGURE 5 Surge Response (8/20 Surge current waveform)

Flow/Wave Soldering (Solder Dipping)

Peak Temperature	260 °C +0 / -5 °C
Dipping Time	10 seconds
Soldering Number	1 time


Physical Specifications

Weight	Contact manufacturer					
Case	Epoxy encapsulated					
Terminal	Silver plated leads, solderability per MIL- STD-750 Method 2026					

SETsafe SET fuse

SPCL10 Series (10 kA)

Soldering Parameters

Reflow Solderi	ng Parameters	Lead-Free Assembly				
	Temperature Min (T _{S (min)})	150 °C				
Pre-heat	Temperature Max (T _{S (max)})	200 °C				
	Time (min to max) (t _s)	60 ~ 120 seconds				
Average Ramp Up Rate (L	iquidus Temp (TL) to Peak	3 °C / second max.				
$T_{\rm S}$ (max) to $T_{\rm L}$	Ramp-up Rate	3 °C / second max.				
	Temperature (T _L) (Liquidus)	217 °C				
Reflow	Time (min to max) (t _L)	60 ~ 150 seconds				
Peak Temp	erature (T _P)	260 ^{+0/-5} °C				
Time of within 5 °C of Act	ual Peak Temperature (t _P)	20 ~ 40 seconds				
Ramp-do	own Rate	6 °C / second max.				
Time from 25 °C to	Time from 25 °C to Peak Temperature					
Do Not	Exceed	260 °C				

Packaging Information

Part Number	Package	Quantity	Packaging Option
SPCL10-XXXX	SPCL Package	56 PCS / Inner Box	Bulk
SPCL10-XXXX-12	SPCL Package	12 PCS / Inner Box	Bulk

Glossary

ltem	Description
Vc	Clamping Voltage Voltage across TVS in a region of low differential resistance that serves to limit the voltage across the device terminals.
V _R	Reverse Stand-off Voltage Maximum voltage that can be applied to the TVS without operation. NOTE : It is also shown as V _{WM} (maximum working voltage (maximum d.c. voltage)) and known as rated stand- off voltage (V _{so}).
I _R	Reverse Leakage CurrentCurrent measured at $V_{R.}$ NOTE : Also shown as I_D for stand-by current.
V _{BR}	Breakdown Voltage Voltage across TVS at a specified current I_{T} in the breakdown region.
I _{PPM}	Rated Random Recurring Peak Impulse Current Maximum-rated value of random recurring peak impulse current that may be applied to a device.
$P_{M(AV)}$	Rated Average Power Dissipation Maximum-rated value of power dissipation resulting from all sources, including transients and standby current, averaged over a short period of time.
Р _{РРМ}	Rated Random Recurring Peak Impulse Power Dissipation Maximum-rated value of the product of rated random recurring peak impulse current (I_{PPM}) multiplies by specified maximum clamping voltage (V_{C}).
CJ	Capacitance Capacitance across the TVS measured at a specified frequency and voltage.
V _{FS}	Peak Forward Surge VoltagePeak voltage across an TVS for a specified forward surge current (IFS) and time duration.NOTE : Also shown as V _{F.}
I _{FS}	Forward Surge Current Pulsed current through TVS in the forward conducting region. NOTE : Also shown as <i>I</i> _{F.}
α _{v(BR)}	Temperature Coefficient of Breakdown Voltage The change of breakdown voltage divided by the change of temperature.
I PP	Peak pulse Current Peak pulse current value applied across the TVS to determine the clamping voltage $V_{\rm C}$ for a specified wave shape.
Ι _Τ	Pulsed D.C. Test Current Test current for measurement of the breakdown voltage V_{BR} . This is defined by the manufacturer and usually given in milliamperes with a pulse duration of less than 40 ms. NOTE : Also shown as I_{BR} .

---(GB-T 18802.321 / IEC 61643-321 / JESD210A)

SETsafe | SET fuse

Usage

- 1. TVS must be operated in the specified ambient temp.
- 2. Do not clean the TVS with strong polar solvent such as ketone, esters, benzene and halogenated hydrocarbon, to avoid damaging the encapsulating layer.
- 3. Please do not apply severe vibration, shock or pressure to TVS, to avoid element cracking.

Replacement

- 1. If TVS is visually damaged, please replace it.
- 2. TVS is a non-repairable product. For safety sake, please use equivalent TVS for replacement.

Storage

- 1. Storage Temp. Range: (-55 to 150) °C.
- 2. Do not store the TVS at the high temp., high humidity or corrosive gas environment, to avoid influencing the solder- ability of the lead wires. The product shall be used up within 1 year after receiving the goods.

Environmental Conditions

- 1. TVS should not be exposed to the open air, nor direct sunshine.
- 2. TVS should avoid rain, water vapor or other condition of high temp. and high humidity.
- 3. TVS should avoid sand dust, salt mist, or other harmful gases.

Max. Typical Capacitance of TVS

The typical capacitance of TVS is listed in the specifications. Designers may refer to it when designing TVS in High frequency circuit.

Installation Mechanical Stress

- 1. Do not knock TVS when installing, to avoid mechanical damage.
- 2. Please do not apply severe vibration, shock or pressure to TVS, to avoid surface resin or element cracking.

DO-221AC SMA6L **DO-214AA** SACB SMBJ P6SMB Package Type Series **DO-214AB DO-214AC** SMAJ P4SMA SMA6J SOD-123FL SMF P4SMF **SMTO-218** ≻ 5.40 **Product Outline** 5.04 5.20 3.65 3.60 2.60 (mm) 75 2.60 5.10 2.30 0.30 8. ł $V_{R}/V_{WM}(V)$ 5.0 ~ 250 5.0 ~ 85 5.0 ~ 440 5.8 ~ 468 5.0 ~ 250 5.0 ~ 50 5.0 ~ 440 5.8 ~ 512 Reverse Stand-off Voltage **Р**_{РРМ} (W) (10/1000 µS) Rated Peak ImPulse Power Dissipation 400 600 200 600 500 IPPM (kA)(8/20 μs) Rated Peak ImPulse Current Operating Temperature -55 to +150 (°C)

Transient Voltage Suppressor (Surface Mount) Features Overview

SPCL10 Series (10 kA)

ETsafe

SET fuse

Transient Voltage Suppression Diodes

TVS Diodes

Transient Voltage Suppressor (Surface Mount) Features Overview

SETsafe SPCL10 Series (10 kA)

SET fuse

Transient Voltage Suppression Diodes

TVS Diodes

	/	Ν														/	1
	DO-201	0	0	0	1.5KE	LCE	0	0	0	0	0	0	0	0	0	0	
lype	DO-41	P4KE															
Package Type	DO-15	0	SAC	P6KE	0	0	0	0	0	0	0	0	0	0	0	0	Series
Pack	P600	0					5KP	15KPA	20KPA	30KPA							
R	adial lead	0	0	0	0	0	0	0	0	0	SPCL1	SPCL3	SPCL6	SPCL10	SPCL15	SPCL20	
	ct Outline mm)	00 ↓ 0.00 ↓	Φ3.10 02. 9	57.50	Φ5.05 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	59.15 1		Ф8.85 	26.65		\$1.42 20.48 22.48	+54.15 	2	20.48	14.50 	2.00	
V _R / Reverse St	V _{WM} (V) tand-off Voltage	5.8 ~ 468	5.0 ~ 50	5.8 ~ 512	5.8 ~ 512	6.5 ~ 90	5.0 ~ 250	17 ~ 280	20 ~ 300	28 ~ 360	76	15 ~ 430	30 ~ 430	15 ~ 530	58 ~ 380	16 ~ 76	
Pr (10/1 Rated F Power	РРМ (W) 1000 µS) Peak ImPulse Dissipation	400	500	600	15	00	5000	15000	20000	30000				0			
IPPM (KA Rated Peak	A)(8/20 µS) ImPulse Current		0							1	3	6	10	15	20		
Tem	erating perature °C)		-55 to +150									1	-55	to +125			

Transient Voltage Suppressor (Axial Lead) Features Overview

TVS Diodes Transient Voltage Suppression Diodes

SETsafe SET fuse